keskiviikko 19. joulukuuta 2018

Joulusatu



Pikku Rapa asui Pääsiäissaarella. Hän oli kuullut, että kaukana pohjoisessa Korvatunturilla, maapallon toisella puolella asui Joulupukki, joka huolehti siitä, että maailman kaikki kiltit lapset saivat joululahjoja, ainakin yhden. Joulupukille saattoi lähettää kirjeen ja toivoa, mitä kaikkein mieluimmin haluaisi joululahjaksi.

Pikku Rapa tiesi, että Joulupukilla oli tontuiksi kutsuttuja apulaisia, jotka käyttivät tonttulakkia, eräänlaista punaista pipoa, jonka päässä heilui valkoinen tupsu. Joulupukillakin oli tällainen lakki ja siinä oli oikein iso tupsu. Rapa oli nähnyt kuviakin ja hän halusi tuollaisen lakin. Ehkäpä joku Pääsiäissaarella ihastuisi lakkiin ja päättäisi tehdä vähän isomman, joka pantaisiin jonkun saarella olevan kivipatsaan päähän. Se vasta olisi hieno näky. Rapa kirjoitti Joulupukille.

Postilaitos kuljetti kirjettä, moneen kertaan se harhautui, mutta löysi lopulta tiensä Korvatunturille täynnä erilaisia leimoja ja uudelleenlähetysmerkintöjä. Joulupukki luki kirjeen ja päätti toteuttaa toiveen.

Joulupukin lähettämössä oli juuri otettu käyttöön moderni tekniikka ja varsinkin kauas toimitettavat lahjat lähetettiin pienoishelikopterilla, dronella.Tätä päätettiin kokeilla myös Pääsiäissaaren yhteyteen. Lennon piti tapahtua mahdollisimman suoraan, jotta kopterin akkujen varaus varmasti riittäisi. Etäisyys piti saada lasketuksi, samoin suunta, johon kopterin piti Korvatunturilta lähteä.

Tästä syntyi ongelma. Osa tontuista oli kyllä suorittanut ylitonttututkinnon, johon sisältyi myös matematiikkaa, mutta ei niin paljoa, että he olisivat osanneet laskea suunnan ja etäisyyden. Päätettiin käyttää ulkopuolista konsulttia lähimmästä yliopistokaupungista. Tämä laski hetkessä halutut luvut ja kirjoitti palveluksistaan varsin suolaisen laskun. Joulupukki totesi, että laskun takia 5000 lapsen lahjat oli valittava alemmasta hintaluokasta. Lahjojen tekemisestä vastasi Tonttupaja, joka oli osa samaa konsernia kuin Joulupukkipalvelu, mutta konsernin sisällä sovellettiin sisäistä laskutusta. Joulupukkipalvelulle kuului vain logistiikka, ja tällä tavoin konsultin lasku siirtyi Tonttupajan kannettavaksi.

Etäohjattava kopteri saatiin matkaan. Akkujen latauksen oli määrä riittää Pääsiäissaarelle saakka. Muutaman päivän kuluttua kopterilta kuitenkin tuli ilmoitus, että akkujen varaustila oli laskenut odotettua nopeammin ja uusi lataus tarvittaisiin viimeistään 10000 kilometrin lennon jälkeen. Joulupukkipalvelussa jouduttiin pohtimaan, mistä lataus olisi tilattava ja mihin kopteri olisi ohjattava laskeutumaan.

Aiemmin käytetty konsultti tuli avuksi, ja selvitti hetkessä sopivan latauspaikan. Toiset 5000 lasta joutuivat tyytymään alemman hintaluokan lahjaan.

Lataus järjestyi, ja kopteri pääsi onnellisesti Pääsiäissaarelle, jossa Rapa oli jo jonkin aikaa tähyillyt horisonttiin kopteria odottaen. Oikean tähyilysuunnan hän oli itse laskenut.

Korvatunturilla konsultin palkkiot herättivät kiivaan keskustelun. Vaadittiin, että ylitonttututkintoon oli lisättävä trigonometriaa ja vektorialgebraa niin paljon, että tontut itsekin suoriutuisivat suunnistukseen tarvittavista laskuista. Toiset kuitenkin katsoivat, että tämänkaltainen panostus oli ylimitoitettua ja riittäisi, että hankittaisiin laskentaohjelma, jossa tarvittavat laskut olisivat valmiiksi ohjelmoituina; modernissa maailmassa matematiikka on ohjelmistojen käyttöä ja niiden opettelu riittäisi. Asiaa ei jaksettu pohtia ja vähitellen keskustelu laantui. Sen sijaan siirryttiin pohtimaan tutkinnon yleistä tietokoneistamista: tulisiko kokeessa kirjoittaa vastaukset Times-, Lucida- vai Comic Sans -fontilla.


Sen pituinen se.

----------
Joulupohdittavaa lukijalle: Mikä on etäisyys Korvatunturilta Pääsiäsissaarelle ja mihin suuntaan kopterin on lähdettävä? Miltä lentoreitti näyttää kartalla? Mitkä olisivat sopivia paikkoja kopterin akkujen lataamiseen? Mihin suuntaan Rapa tähyili kopteria odottaessaan? Työvälineinä kynä ja paperi tai jokin ohjelmisto tai jotakin muuta, mikä lukijaa miellyttää. Vastauksen voi jättää kommenttina, mukaan tieto välineistä.

torstai 15. marraskuuta 2018

Pallon pyöreydestä

Pallo GeoGebralla tehtynä
Pallon piirtäminen sujuu nykyisissä kolmiulotteisuutta tukevissa geometriaohjelmistoissa vaivatta. Oheinen kuvio on tehty GeoGebralla ja pallon ääriviiva näkyy ympyränä, kuten kaiketi pitääkin.

Kynä ja paperi -aikaan kolmiulotteisia kuvioita piirrettiin kaksiulotteiselle paperille usein ns. kavaljeeriprojektiota (kavaljeeriperspektiiviä) käyttäen. Tällöin paperi ajatellaan yz-tasoksi ja x-akseli on alunperin sitä vastaan kohtisuorassa. Sen ajatellaan kuvautuvan 45 asteen kulmaan alavasemmalle siten, että yksikönpituus on puolet y- ja z-akselien yksikönpituudesta. Tällöin kaikki yz-tason suuntaiset tasokuviot kuvautuvat kokonsa ja muotonsa säilyttäen.

Pallon konstruktio kavaljeeriprojektiossa (itse asiassa hieman tästä poikkeavaa ns. ruutumenetelmää käyttäen)
Pallon kuva kavaljeeriprojektiossa voidaan siten hahmotella leikkaamalla palloa yz-tason suuntaisilla tasoilla. Leikkauskuviot ovat ympyröitä ja ne siis kuvautuvat kokonsa ja muotonsa säilyttäen. Jos pallon keskipiste on origossa, ympyröiden keskipisteet ovat x-akselilla ja helposti löydettävissä. Leikkausympyröiden kuvat voidaan siten piirtää harppia käyttäen, kuten oheisessa kuviossa on tehty. Oikeanpuolinen ympyrä on apukonstruktio leikkausympyröiden säteiden määrittämistä varten. Pallon ääriviiva saadaan leikkausympyröiden kuvien verhokäyränä, ts. käyränä joka sulkee sisäänsä kaikki ympyrät. Tätä ei ole kuvioon piirretty, mutta se hahmottuu helposti, kun vihreät leikkausympyrät ovat riittävän tiheässä.

Verhokäyrä näyttää kuitenkin olevan hieman elliptinen ja pallo venähtänyt x-akselin suunnassa. Tämä näkyy punaisesta ympyrästä, joka ympäröi pallon kuvaa. Eikö pallon ääriviiva siis olekaan ympyrä?

Tässä tapauksessa se ei ole ympyrä vaan ellipsi, mikä johtuu siitä, että kavaljeeriprojektio on vino projektio. Yleinen yhdensuuntaisprojektio syntyy siten, että kiinnitetään kuvataso ja projektiosäteiden suunta. Pisteen kuva saadaan asettamalla suora — projektiosäde — pisteen kautta ja hakemalla tämän ja kuvatason leikkauspiste. Selvää on, että projektiosäteet eivät saa olla kuvatason suuntaisia. Luontevinta on, että ne ovat kuvatasoa vastaan kohtisuoria, jolloin puhutaan ortogonaaliprojektiosta. Ne voivat kuitenkin olla vinossa asennossa kuvatasoon nähden, jolloin projektion sanotaan olevan vino.

3D-geometriaohjelmistot tekevät oletuksena ortogonaaliprojektiokuvia, kuten luonnollista onkin. Aikoinaan käytettiin kavaljeeriprojektiota, koska tällöin käsin piirtämisestä tuli melko helppoa: yz-tason suuntaiset kuviot kuvautuivat sellaisinaan.

Millaisia yhdensuuntaisprojektiot — ortogonaaliset tai vinot — sitten voivat olla? Erään vastauksen antaa ns. Pohlken lause: Jos piirretään kolme samasta pisteestä $O$ lähtevää sädettä ja asetetaan jokaiselle yksi piste, $E_x$, $E_y$, $E_z$, niin nämä ovat positiivisten (suorakulmaisten) koordinaattiakseleiden $x$, $y$ ja $z$ kuvat eräässä yhdensuuntaisprojektiossa ja pisteet $E_x$, $E_y$, $E_z$ ovat yksikköpisteiden $(1,0,0)$, $(0,1,0)$, $(0,0,1)$ kuvat. Edellytyksenä on, että pisteet $O$, $E_x$, $E_y$ ja $E_z$ eivät kaikki ole samalla suoralla. (Lisätietoja kirjoittajan kirjoista Perspektiivikuvan geometriset perusteet ja Vaellusretkiä matematiikkaan.)

Pohlken kuvio, ts. suorakulmaisen avaruuskoordinaatiston kuva eräässä yhdensuuntaisprojektiossa

Karl Wilhelm Pohlke (1810-1876) oli saksalainen taiteilija ja geometrikko, joka esitti lauseen 1860, mutta ei liene todistanut sitä. Todistuksen esitti Hermann Amandus Schwarz 1864.

Pohlken lauseen mukainen yhdensuuntaisprojektio on joko ortogonaalinen tai vino. Kummasta on kyse, on selvitettävissä hieman yllättävällä kriteerillä: Asetetaan piste $O$ kompleksitason origoksi ja tulkitaan pisteet $E_x$, $E_y$ ja $E_z$ kompleksiluvuiksi $z_1$, $z_2$ ja $z_3$. Kyseessä on ortogonaaliprojektio, jos ja vain jos $z_1^2 + z_2^2 + z_3^2 = 0$. En oikein osaa sanoa, onko tässä jotakin syvällistä, vai onko kyseessä pikemminkin sattuma, mitä se tässä yhteydessä sitten tarkoittaisikin.

tiistai 30. lokakuuta 2018

SAT-testi ja ylioppilaskoe

Ilman laskinta ratkaistava SAT-tehtävä.

Tuttavapiirin lukiolainen aloitti lukio-opintonsa Suomessa, mutta jatkaa niitä nyt New Yorkissa. Tilanne on siten otollinen suomalaisen ja amerikkalaisen systeemin vertailuun. Sain nähdäkseni sikäläisen SAT-testin, jolla arvioidaan mm. matematiikan osaamista. Näistä testeistä löytyy tietoa myös netistä — kuinkas muuten: https://collegereadiness.collegeboard.org/. Harjoitteluun tarkoitettuja esimerkkikokeitakin on saatavissa:
https://collegereadiness.collegeboard.org/sat/practice/full-length-practice-tests tai
https://collegereadiness.collegeboard.org/psat-nmsqt-psat-10/practice/full-length-practice-tests.
Näissä on neljä osaa, kaksi ensimmäistä liittyvät englannin kieleen, kaksi viimeistä ovat matematiikkaa.

En tarkoin tunne amerikkalaista systeemiä enkä tiedä, mikä on SAT-testien käyttö ja missä määrin ne vaikuttavat esimerkiksi jatko-opintoihin valittaessa, ts. ovatko ne verrattavissa suomalaiseen ylioppilastutkintoon. Tästä riippumatta ne ovat mahdollinen malli päättökokeiden järjestämiseen. Yhden maan ratkaisuja ei yleensä ole mahdollista eikä järkevää sellaisenaan kopioida toiseen maahan, toisenlaisiin oloihin. Eri mahdollisuuksiin kannattaa silti perehtyä: aina voi oppia uutta, saada uusia ideoita. Myös PISA-menestyksellä mitaten maailman parhaassa Suomessa. (En tiedä, missä määrin näin on tehty. Ainakaan en ole nähnyt vertailuihin perustuvia pohdiskeluja ylioppilastutkintoa uudistettaessa. Jos joku tietää, niin kertokoon.)

Jos SAT-testiä ja suomalaista ylioppilastutkintoa verrataan matematiikan osalta, niin mitkä ovat havainnot?

Ensinnäkin SAT-testi on matemaattisessa mielessä selvästi suomalaista ylioppilaskoetta helpompi. Silti arvelen, että monet tehtävistä eivät olisi mitenkään liian helppoja suomalaiseen ylioppilaskokeeseen. Painotus on suomalaista koetta käytännöllisempi.

SAT-koe on kaksiosainen: ilman laskinta ja laskimen kanssa. Ohjelmistoja ei käytetä. Monissa laskinosion tehtävissä laskinta ei millään tavoin tarvita ja on vaikeata keksiä, miten sitä voisi käyttää.

Suurin osa tehtävistä on monivalintatehtäviä, tarjolla on neljä vaihtoehtoa, joista yksi oikea. Vastaukset annetaan koneellisesti luettavalle vastauslomakkeelle. Loppupään tehtävissä annetaan vastaus numeerisesti tietynlaiseen taulukkoon, joka myös luetaan koneellisesti. Arvostelu perustuu siten yksinomaan vastauksiin. Minkäänlaisia selityksiä tai perusteluja ei kirjoiteta.

Hämmästyttävin ero on kuitenkin käytettävissä oleva aika. Eräässä esimerkkikokeessa on laskimettomassa osiossa 20 tehtävää ja aikaa 25 minuuttia. Laskinosiossa on 38 tehtävää ja aikaa 55 minuuttia. Kiire tulee, vaikka tehtävät ovatkin helppoja. Voisi kuvitella, että tulosten hajonta syntyy opiskelijan nopeuden ja paineen sietämisen perusteella. Tällöin voi kysyä, mitä koe oikeastaan mittaa.

Toteutukseltaan koe on varmasti yksinkertaisempi kuin suomalainen ylioppilastutkinto, jonka tietotekninen vaativuus hakee vertaistaan. (Minua hämmästyttää, miten innokkaasti opettajakunta paneutuu aika eksoottiseen tietotekniseen virittelyyn, kun ylioppilastutkintolautakunta käyttää työnantajan valtaa ja käskee.)

Ei SAT-mallia varmastikaan kannata kopioida, mutta siinä voisi olla aineksia, joita kannattaisi harkita. Kyse on paljolti siitä, mitä ylioppilaskokeen halutaan olevan. Jokaisella systeemillä on enemmän tai vähemmän heikkoutena, että se ohjaa opetusta kokeesta selviämisen suuntaan. SAT-mallia on kritisoitu siitä, että opetuksesta tulee testien harjoittelua, mutta ei Suomessakaan vastaavasta kaukana olla. Olisi syytä pitää mielessä lukio-opintojen tarkoitus. Mikä se sitten onkin.

SAT-tehtävä, jossa laskimen käyttö on sallittu.

tiistai 16. lokakuuta 2018

Matematiikan yksikäsitteisyydestä

K. Väisälä, Trigonometria, 5. painos, s. 46
En oikein ymmärrä, mitä matematiikan yksikäsitteisyys voisi tarkoittaa, mutta olen tavannut koko joukon henkilöitä, jotka pitävät matematiikkaa yksikäsitteisenä siinä mielessä, että jokainen matematiikan tehtävä voidaan ratkaista vain yhdellä oikealla tavalla. Käsitys tuntuu minusta aika erikoiselta, mutta ehkä se on yleisempikin, koska didaktikotkin ovat siihen kiinnittäneet huomiota: Riikka Palkki, Matematiikan opettajien ja opettajaopiskelijoiden käsityksiä vertailumenetelmästä (https://www.lumat.fi/index.php/lumat/article/view/327/324). Artikkelin vertailumenetelmä tarkoittaa, että oppilaat joko itse laativat tai heille esitetään erilaisia ratkaisutapoja samaan tehtävään ja että asiaa tämän jälkeen pohditaan.

Milloinkahan tällainen yksikäsitteisyyskäsitys on syntynyt?

Olen käynyt lukioni 50-luvun lopulla ja 60-luvulla opiskellut matematiikkaa yliopistossa. Jo kouluaikana minulle oli selvää, että tehtäviä saattoi ratkaista eri tavoilla, kaikki oikeita. Ei asiaa mitenkään erityisesti painotettu, näin vain tapahtui ja tilanne tuntui täysin luonnolliselta. Se oli myös osa matematiikan viehätystä: asiaa saattoi lähestyä eri näkökulmista ja taustalla oli jotakin invarianttia, näkökulmista riippumatonta.

Onko jossakin vaiheessa noiden aikojen jälkeen matematiikan opetus muuttunut siten, että tehtäviin pyritään tarjoamaan valmis tietyn reseptin mukainen ratkaisu, joka oppilaan tulee oppia? Tavallaan siis opetellaan ulkoa tiettyjä rutiineja: näin ratkaistaan ensimmäisen asteen yhtälö, näin haetaan funktion maksimikohta, näin tämän tyypin tehtävä. Kuvittelen, että ennen opetettiin pikemminkin toisin päin: esimerkiksi erilaisia työkaluja lausekkeen muokkaamiseen ja näiden ominaisuuksia, sitten näitä eri tavoin kombinoimalla ratkaistiin tehtävä. Kombinointi saattoi tapahtua monella tavalla ja syntyi erilaisia ratkaisutapoja.

Toki olen omissa opinnoissani moneen kertaan opetellut myös rutiineja, mutta ainoina mahdollisuuksina en ole niitä koskaan ajatellut. Esimerkkinä vaikkapa rationaalifunktion integrointi: jos et mitään fiksumpaa keksi, niin tee seuraavasti ... Olen myös opettanut tällaisia rutiineja, mutta en toivoakseni koskaan ainoana sallittuna tai ainoana mahdollisena lähestymistapana.

Pitkään matematiikkaan kuului lukioaikanani erillinen trigonometrian osuus. Tässä ratkaistiin myös trigonometrisia yhtälöitä ja jopa epäyhtälöitä. Nämä muodostivat erinomaisen esimerkin mahdollisuuksista käyttää erilaisia lähestymistapoja. Käytettävissä olivat trigonometrian peruskaavat ja näitä saattoi käyttää monella eri tavalla. Tuloksena monia erilaisia ratkaisutapoja. Ehkä kuvaavaa on, että kun säästin lukioaikaiset laskuni käyttääkseni niitä myöhemmin yksityistunteja antaessani, totesin ne aika pian hyödyttömiksi. Omat taidot olivat kehittyneet sen verran, että lähes poikkeuksetta löysin tehtävälle lyhyemmän ja fiksumman ratkaisutavan.

Vaikka trigonometriset yhtälöt olivatkin opettavaisia, olivat ne jo tuolloin aika eksoottinen pitkän matematiikan osa. Vielä enemmän ne olisivat sitä nyt. Sopivia joustavuuden harjoittelukohteita löytyy kuitenkin muitakin, vaikkapa lausekkeiden algebrallinen sievennys. Tämä on sikälikin hyvä vaihtoehto, että sievyys ei ole yksikäsitteistä, vaan riippuu siitä, mitä tuloksella on seuraavaksi tarkoitus tehdä. Eikä symbolisista laskentaohjelmistakaan ole aina apua. Niillä on omat periaatteensa ja tulosten saattaminen johonkin vaihtoehtoiseen muotoon voi olla vaativa tehtävä.

Jos rutiinien sijaan painotetaan sopivien työkalujen opettelua, nousee oleelliseksi kysymykseksi, mitkä ovat tarpeellisia ja sopivia työkaluja. Trigonometria on tässäkin kohdassa hyvä — tai usein huono — esimerkki. Trigonometrisia kaavoja on paljon ja usein esitetään aika sekalainen näistä valittu kokoelma. Oleellisempaa olisi esittää varsin harvoja kaavoja ja näyttää näiden riippuvuudet ja johtaminen. Kyse on matemaattisen tiedon jäsentämisestä, minkä pitäisi olla opetuksen tärkeimpiä tavoitteita. Oman näkemykseni trigonometriasta olen esittänyt lukiolaiselle sopivassa tietosanakirjassa M niinkuin matematiikka, http://matta.hut.fi/matta/isom/isom.pdf#page.106. (Olemassa myös painettuna kirjana, ks. http://www.elisanet.fi/simo.kivela/kirjat.html.)

sunnuntai 23. syyskuuta 2018

Kimurantti Bolzano

Bolzanon lause
Jokainen pitkän matematiikan lukija taitaa nykyään oppia Bolzanon lauseen ja sen tärkeyden: Jos jatkuva funktio saa erimerkkiset arvot välin päätepisteissä, niin sillä on tällä välillä ainakin yksi nollakohta. Miksi tämä sitten on niin tärkeä tulos? Eikö ajattelevan lukiolaisen pitäisi pikemminkin pitää asiaa triviaalina: jos x-akselin alapuolella oleva piste ja yläpuolella oleva piste yhdistetään yhtenäisellä käyrällä, niin pakkohan käyrän on leikata x-akseli jossakin pisteessä? Miksi tässä pitää vannoa 1800-luvun alkupuoliskolla vaikuttaneen tšekkiläisen matemaatikon Bernard Bolzanon nimiin? Onhan sekin selvää, että jos ympyrän keskipiste ja ympyrän ulkopuolinen piste yhdistetään, niin yhdysjana leikkaa ympyrän jossakin pisteessä.

Kyseessä on yllättävän pitkän iän saavuttanut jäänne ajalta, jolloin analyysia — differentiaali- ja integraalilaskentaa — pyrittiin lukiossakin opettamaan nykyistä täsmällisemmin. Ajankohta on 60-luku, jolloin matematiikan opetusta kehitettäessä abstraktiotasoa pyrittiin nostamaan ja iskettiin kyllä myös kirves joukko-opin kiveen. Sen jälkeen muutokset ovat olleet oppimäärän supistuksia ja trivialisointeja, mutta joitakin kohokohtia on jäänyt kuin oksankohtia kuluneeseen lattiaan. Bolzanon lause on näitä.

Jos jatkuvuus määritellään huolellisesti epsilonien ja deltojen avulla eikä vain epämääräisesti funktion kuvaajan katkeamattomuutena, asia ei ole aivan yksinkertainen. Reaalilukuihinkin voi suhtautua vain lujasti uskoen sen enempää ihmettelemättä. Täsmällisempään käsittelyyn tarvitaan aksiomatiikka mukaan luettuna pienimmän ylärajan olemassaoloa koskeva täydellisyysaksiooma. Vaihtoehtona on Cauchyn jonojen käyttö. Mitään näistä ei oikein voi sisällyttää lukion oppimäärään ehkä poisluettuna matematiikkaan vahvasti panostavat lukiot.

Tässä ympäristössä Bolzanon lause ei ole lainkaan triviaali. Sen todistuksessa tarvitaan sekä jatkuvuuden täsmällinen karakterisointi että reaalilukujoukon täydellisyys. Eihän se edes ole voimassa rationaalilukujoukossa. Arvelen, että Bolzanon lauseen luonne ei ole selvä monille opettajillekaan, vaikka ehkä ovatkin sen aikanaan yliopistossa opiskelleet.

Voisi olla parempi, että Bolzanon lausetta ei lukiossa käsiteltäisi, ellei sitten voida avata sen todellista luonnetta. Ei ole syytä antaa mielikuvaa, että matematiikka on selviin asioihin kohdistuvaa saivartelua ja pilkunviilausta.

Lopuksi pientä pohdittavaa asiaan liittyen.

Cantorin funktioksi, joskus myös paholaisen portaiksi kutsutaan oheisen kuvan mukaista välillä $[0,1]$ määriteltyä funktiota $f$:
Cantorin funktio

Päätepisteissä on $f(0) = 0$ ja $f(1) = 1$. Väli $[0,1]$ jaetaan kolmeen yhtä suureen osaan ja keskimmäisellä kolmanneksella (suljetulla välillä) funktio saa vakioarvon päätepistearvojen puolivälistä, siis $\frac{1}{2}$. Jäljellä olevat osat, ensimmäinen ja viimeinen kolmannes jaetaan jälleen kolmeen yhtä suureen osaan. Keskimmäisillä (suljetuilla) osilla funktio saa vakioarvon päätepistearvojen puolivälistä, siis $\frac{1}{4}$ ja $\frac{3}{4}$. Jäljellä olevat palat jaetaan jälleen kolmeen yhtä suureen osaan ja jatketaan samaan tapaan loputtomiin.

Funktio tulee tällöin määritellyksi osaväleillä, joiden yhteinen pituus on
\[
\frac{1}{3} + 2\cdot\frac{1}{9} + 4\cdot\frac{1}{27} + \dots =
\frac{1}{2}\sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k = 1,
\]
ts. se on määritelty koko välillä $[0,1]$. Ilmeisesti funktio on myös jatkuva.

Bolzanon lauseesta seuraa, että tällainen funktio saa kaikki arvot pienimmän ja suurimman arvonsa väliltä, siis esimerkiksi irrationaaliarvon $1/\sqrt{2}$. Edellä olevan mukaan funktio saa kuitenkin vain arvoja, jotka ovat luvun $\frac{1}{2}$ potenssien monikertoja, ts. muotoa $\displaystyle\frac{n}{2^k}$, missä $n$ ja $k$ ovat luonnollisia lukuja. Nämä ovat rationaaliarvoja.

On siis syntynyt ristiriita. Vai onko?

keskiviikko 29. elokuuta 2018

Miksi matematiikasta ei pidetä?

Felice Casorati, Gli scolari (Koululaiset) 1927-1928 (Ateneum, Fantastico!)
Matematiikalla on julkisuudessa hieman huono maine. Se on kuivaa ja hyödytöntä, elämälle vierasta, vain harva sitä tarvitsee. Poikkeuksena teknillisiin tehtäviin suuntautuvat henkilöt. Periaatteessa sen tärkeys modernissa yhteiskunnassa kyllä tunnustetaan, mutta kulttuuriahan se ei ole. Kieliä ei pidetä vastaavalla tavalla hyödyttöminä, biologiankin merkitys yleensä ymmärretään. Historiaa ehkä pidetään tylsänä vuosilukuluettelona, mutta kai sillä kuitenkin on jotakin tekemistä kulttuurin kanssa. Kirjallisuus toki on kulttuuria ja hyödyllistä, vaikka elämänsä voikin elää kaunokirjallisuutta lukematta.

Matematiikan mainetta ei kannata itkeä, mutta sen syitä voisi ehkä pohtia. Tavallisen kansalaisen käsitys matematiikasta perustuu siihen, mitä hän on koulussa oppinut. Aluksi numeroilla laskemista, mutta senkin merkitys on vähentynyt. Enää ei ole aikoihin laskettu kaupassa hintoja yhteen kynällä käärepaperin palalle kirjoittaen. Koneet hoitavat asiat paljon näppärämmin. Sen jälkeen kirjaimilla laskemista, kuvioiden piirtelyä, eksoottisen tuntuisia käsitteitä, kaavoja. Paloja sieltä ja täältä, punainen lanka puuttuu. Toki paikoin sovellustehtäviä, mutta nekin usein tuntuvat jotenkin keinotekoisilta.

Ylioppilaskokeen digitalisoiminen on tuonut omat lisänsä. Lisää silppua, eikä aina edes kovin matemaattista. Opetellaan joidenkin laskimien tai ohjelmistojen yksityiskohtia, mutta näitä ei elämässä sen koommin tarvita. Ei edes tekniikan alan opinnoissa, joissa on eri työkalut. Tietoteknistä kikkailua kyllä opitaan, ja sillä voi olla käyttöäkin. Punainen lanka kuitenkin puuttuu tässäkin.

Olen aikoinani lukenut lukiossa lyhyen matematiikan. Silloisen oppikoulun ensimmäisellä luokalla (vastaa nykyään peruskoulun viidettä luokkaa) aloitin nimittäin kielilinjalla enkä lukiossa enää voinut säädösten mukaan valita pitkää matematiikkaa. Olisin halunnut, sillä kiinnostus matematiikkaan heräsi joskus 13-14-vuotiaana. En tietysti tiedä, miten suhtautuisin, jos nyt olisin aloittamassa lukiota, mutta minulla on epäily, että en samalla tavoin olisi innostunut matematiikkaan.

Lukija saattaa ajatella, että tätä se digitalisaatio tekee. Matematiikka ei innosta kuten vanhoina hyvinä aikoina. Ei aivan näinkään. En aikoinani erityisemmin pitänyt numeerisista laskuista, en yliopistotasollakaan. Virhealtista pikkunäpertelyä logaritmitauluineen ja laskutikkuineen, myöhemmin peruslaskimineen. Asenteeni muuttui, kun pääsin käsiksi ohjelmointiin. Ei enää pikku virheitä, oleellista saada ohjelman logiikka toimimaan ja pitää isompi laskentatyö hallinnassa. Matematiikan osaamiselle löytyi käyttö.

Epäilen, että matematiikan huono maine paljolti johtuu siitä, että koulu ei anna siitä innostavaa kuvaa. Ongelmat alkavat 60-luvun uudesta matematiikasta ja siihen liittyvästä abstraktiotason nostosta. Uudistus epäonnistui ja sen jälkeen palattiin takaisin. Vuosien kuluessa karsittiin paisuneita sisältöjä ja yritettiin saada koko ikäluokka mukaan spiraaliperiaatteella. Seurauksena sisältö pirstoutui eikä enää muodostunut kokonaiskuvaa. Punainen lanka katosi. Ohjelmointiin oli vielä 80-luvulla innostusta, mutta tämä laantui. Digitaalitekniikka tunkeutui kouluihin todella vasta muutama vuosi sitten ylioppilaskokeen digitalisoinnin pakottamana.

Perusvikana on, että sitten uuden matematiikan ei kokonaisuutta ole kertaakaan ajateltu uudelleen. Pieniä muutoksia kerta toisensa jälkeen tietämättä, mihin halutaan mennä. Matematiikka — ainakin koulumatematiikka — on toisaalta laskemista, toisaalta käsitteiden muodostamista ja niiden ominaisuuksien tutkimista. Alkeisaritmetiikan jälkeen laskeminen on nykymaailmassa laskimien ja tietokoneohjelmien käyttöä sekä ohjelmointia. Käytännöllisiä taitoja ja digitaalimaailman perusymmärrystä. Käsitteellinen puoli on osa kulttuurihistoriaa ja antaa ajatusmalleja laskemiseen, tilan hahmottamiseen ja päättelyyn. Kulttuuria kaikki tämä.

Laskentamahdollisuuksien monipuolistuminen vaikuttaa tai ainakin sen pitäisi vaikuttaa myös koekäytäntöihin: Ennen saattoi ajatella, että jos opiskelija suoriutui laskentatehtävästä, myös käsitteellinen puoli oli riittävästi hallinnassa. Enää näin ei ole. Oikean vastauksen saaminen voi riippua vain siitä, osaako painaa oikeata näppäintä tai antaa oikean komennon. Ratkaisu ei ole laskentavälineiden kieltäminen, vaan on kysyttävä sitä, mitä halutaan testata.

Hätäisen opetussuunnitelmien uudistamisen sijasta onkin syytä lähteä pohtimaan, mitä matematiikan opetuksella digitaaliaikana oikein tavoitellaan ja rakentaa opetussuunnitelma tältä pohjalta. Vanha kunnon komiteatyö kunniaan. Jos vielä saataisiin punainen lanka säilymään, matematiikka ei enää näyttäisi hyödyttömältä silppukokoelmalta, vaan voisi myös herättää kiinnostusta. Mainekin varmaan paranisi.

maanantai 23. heinäkuuta 2018

Planigrafi

Kostean helteisenä päivänä ryhdyin mahdollisimman vähän fyysistä ponnistelua vaativaan puuhaan: raivaamaan vuosien varrella kertyneitä Mathematica-tiedostoja. Joukossa oli muun ohella planigrafin ominaisuuksia selvittelevä tiedosto.

Mikäkö on planigrafi, tarkemmin sanottuna Darboux´n – Koenigsin planigrafi? Kyseessä on mekanismi, jota on tutkittu ns. kinemaattisessa geometriassa. Geometriahan on sikäli monipuolinen tiede, että eteen voidaan asettaa melkoinen määrä erilaisia attribuutteja.

Planigrafissa on pystyakseli, jolla on kolme kiinteää pistettä ($A_1$, $B_1$, $C_1$). Jokaisessa pisteessä on vapaasti liikkuva pallonivel ja niihin on kiinnitetty kolme eripituista tankoa, voivat toki olla yhtä pitkiäkin. Näiden toiset päät on kiinnitetty palloniveliin, jotka sijaitsevat kiinteästi omalla tangollaan ($A$, $B$, $C$). Pisteet $A$, $B$ ja $C$ sijaitsevat tällöin $A_1$-, $B_1$- ja $C_1$-keskisillä pallokuorilla. Rakenne ei kiinnitä $ABC$-tangon asemaa, vaan se pääsee jossain määrin liikkumaan. Ongelmana on, millaisella pinnalla tangolla oleva piste $P$ tällöin liikkuu.

Oheinen kuvio on peräisin vuonna 1911 Leipzigissa ilmestyneestä Martin Schillingin myyntiluettelosta. Yritys myi runsaat sata vuotta sitten geometrisia matemaattisia malleja moniin yliopistoihin. Tällaisia hankittiin myös Teknilliseen korkeakouluun, Aalto-yliopiston edeltäjään.  Kokoelma on nähtävänä matematiikan laitoksella, planigrafi on malli numero 91 (http://math.aalto.fi/models/).

Millaisella pinnalla piste $P$ sitten liikkuu? Yleensä kyseessä on pallopinta, jonka keskipiste on akselisuoralla. Yksi pisteen $P$ asema on poikkeuksellinen: piste liikkuukin tasossa, joka on kohtisuorassa akselia vastaan. Tämä ei ole kovin yllättävää: taso voidaan ajatella pallopinnaksi, jonka keskipiste on äärettömän kaukana.

Miten tuloksen voisi todistaa? Puhtaasti geometrinen todistus löytyy kirjasta E. J. Nyström, Korkeamman geometrian alkeet sovellutuksineen, Otavan Tiedekirjasto n:o 6, 1948. Harvan nykymatemaatikon geometrian taidot kuitenkaan riittävät todistuksen sujuvaan lukemiseen.

Järjestäessäni mainittua matematiikan mallikokoelmaa joitakin vuosia sitten jäin miettimään, onnistuisiko planigrafia koskevan tuloksen todistaminen analyyttista geometriaa käyttäen, toisin sanoen raa'alla laskemisella. Käsin laskentaa tuskin jaksaisi tehdä, sen verran monimutkaisista lausekkeista on kyse. Koska ne kuitenkin ovat enintään toista astetta olevia polynomeja, symboliset laskentaohjelmat ovat vahvoilla. Onnistui; katso http://www.elisanet.fi/simo.kivela/blg/planigrafi.pdf.

Pisteen $P$ mahdolliset sijainnit eivät toki peitä koko tasoa (tai pallokuorta). Jatkokysymys voisi ollakin, mikä on se alue, jossa piste $P$ voi sijaita. Jätän lukijan pohdittavaksi. Eksaktia tapaa laskea asia en ole löytänyt, mutta symboliset ohjelmat suovat myös mahdollisuuden kokeellisen matematiikan harjoittamiseen ja tällä tavoin kyllä näkee, mikä ilmeisesti on vastaus.

sunnuntai 10. kesäkuuta 2018

Deltafunktio

Edellisessä postauksessani esittelin deltafunktion: $\delta(x) = 0$, jos $x \neq 0$, ja $\delta(0)$ niin vahvasti ääretön, että
\[
\int_{-\infty}^{\infty} \delta(x)\,dx = 1.
\]

Määrittely 'niin vahvasti ääretön' ei kuulosta matemaattisen täsmälliseltä eikä integraaliehtokaan ole uskottava: integraalin määrittelytavasta (näitä on useita) riippuen kuvatunkaltainen $\delta$ joko ei ole integroituva tai integraalin arvo on $0$.  Mistä siis olisi kysymys?

Lähtökohdaksi voidaan ottaa ns. deltajono, funktiot, jotka on välillä $[-1/n,1/n]$ määritelty lausekkeella
\[
\delta_n(x) =
\frac{e^{-\frac{1}{1-n^2x^2}}}{\int_{-1/n}^{1/n}e^{-\frac{1}{1-n^2u^2}}\,du}
\]
ja jotka ovat $= 0$ tämän välin ulkopuolella; $n = 1,\,2,\,3,\,4,\,\dots$.  Jakajana olevasta integraalista seuraa, että jokaisen funktion integraali reaaliakselin yli on $= 1$. Kun $n$ lähestyy ääretöntä (ts. $n \to \infty$) funktion kuvaaja kapenee ja arvolla $x = 0$ lähestyy ääretöntä. Rajalla syntyy siis deltafunktio:
\[
\lim_{n \to \infty} \delta_n(x) = \delta(x).
\]
Funktiot $\delta_n(x)$, $n = 1,2,3,4,5$.


Funktion $\delta_n$ määritelmän perusteella on
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n(x)\,dx = 1.
\] Tässä raja-arvon muodostamista ei kuitenkaan voida siirtää integraalimerkin sisään kuten edellä on todettu. Deltafunktion määrittelyssä on tässä kohden virhe.

Yleisesti hyväksyttyjen deltafunktion laskusääntöjen mukaan on
\[
\int_{-\infty}^{\infty} f(x)\delta(x)\,dx = f(0), \qquad
\int_{-\infty}^{\infty} f(x)\delta(x-1)\,dx = f(1).
\] Kuitenkin integraalin määritelmien perusteella nämä integraalit joko eivät ole olemassa tai ovat $= 0$. Integroitava funktiohan eroaa nollasta enintään yhdessä pisteessä. On siis tehty toinen virhe.

Deltafunktiolla laskemisen taidokkuutta osoittaa kuitenkin, että lopputulokset $f(0)$ ja $f(1)$ ovat aivan oikein. Tehdyt kaksi virhettä nimittäin kumoavat toisensa.

Itse asiassa integraalilaskun vaikeamman väliarvolauseen mukaan on
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)\delta_n(x)\,dx =
\lim_{n \to \infty} f(t) \int_{-\infty}^{\infty} \delta_n(x)\,dx =
\lim_{n \to \infty} f(t),
\] missä $-1/n \le t \le 1/n$. Kun $n \to \infty$, lähestyy $t$ nollaa ja $f(t)$ arvoa $f(0)$, mikäli $f$ on jatkuva funktio. Tulos siis pätee.

Deltafunktio ei ole ainoa tämäntyyppinen olio, vaan niille on kehitetty oma teoriansa, jota kutsutaan distribuutioteoriaksi. Pisteeseen keskittyvästä jakaumasta deltassakin on kyse. Olioita kutsutaan distribuutioiksi tai yleistetyiksi funktioiksi.

Varsinkin fyysikot laskevat sujuvasti deltafunktiolla sekä yhdessä että useammassa ulottuvuudessa. Matemaatikotkin voivat olla rauhallisia, sillä pätevä teoria on olemassa.

lauantai 19. toukokuuta 2018

Kumpi on vaikeampaa: määritelmän tekeminen vai teoreeman todistaminen?

Matemaatikon tehtävä nähdään toisinaan lauseiden eli teoreemojen todistamiseksi. Joku on antanut määritelmät ja formuloinut lauseet, minkä jälkeen matemaatikko todistaa ne. Pätee ehkä koulussa ja ylioppilaskokeessa, matematiikkakilpailuissa, mutta vaativampi tehtävä voi hyvinkin olla luoda järkeviä määritelmiä ja formuloida lauseita tai otaksumia, jotka osoittautuvat paikkansapitäviksi.

Lukija voi vaikkapa pohtia — ellei ennestään tiedä — miksi kakkonen määritellään alkuluvuksi, mutta ykköstä ei. Toisena esimerkkinä puolisuunnikkaan määritelmä.

Esitän seuraavassa hieman mutkikkaamman asetelman lukijan ihmeteltäväksi. Ne lukijat, jotka tietävät, mistä on kyse, vaietkoot, jotta ei pilata muiden iloa liian aikaisin. Lähteitä toki saa käyttää, mutta asiasta tietävät älkööt kavaltako avainsanoja.

Siis: Olkoon $\delta$ reaaliakselilla määritelty funktio, jolle pätee $\delta(x) = 0$, kun $x \neq 0$. Origossa funktion arvo on niin vahvasti ääretön, että
\[
\int_{-\infty}^{\infty} \delta(x)\,dx = 1.
\]

Ja sitten pohtimaan:

Mitä on $\displaystyle \int_{-\infty}^{\infty} f(x)\delta(x)\,dx\,$?

Entä $\displaystyle \int_{-\infty}^{\infty} f(x)\delta(x-1)\,dx\,$?

Miten nämä integraalit oikein tulisi ymmärtää? Ja ovatko ne edes integraaleja? Lausuma 'niin vahvasti ääretön, että ...' ei kuulosta oikein vakuuttavalta eikä matematiikkaan sopivalta.

Fyysikot kuitenkin laskevat tällaisilla integraaleilla ja saavat ihan järkeviä tuloksia. Mistä tässä voisi olla kyse? Mitä matemaatikko sanoisi?  Jonkinlaiseksi vihjeeksi alussa oleva kuva.

torstai 26. huhtikuuta 2018

Penrose-laattoja Oxfordissa

Kirjoitin elokuussa 2014 Helsingin Keskuskadun Penrose-laatoista, jotka muodostavat jaksottoman kuvion. Laattoja on vain kahta tyyppiä, joita kutsutaan nuoliksi (engl. dart) ja leijoiksi (kite). Keskuskadun laattojen nuoli on kuitenkin koottu kolmesta erillisestä palasta ilmeisesti teknisistä syistä, joten aivan oikeaoppinen ei laatoitus ole. Laatoituksia tutki englantilainen matemaatikko ja fyysikko Roger Penrose 1970-luvulla.

Keskuskadun Penrose-laatoitus

Keskuskatu ei tietenkään ole ainoa paikka maailmassa, joka on päällystetty Penrosen laatoilla. Penrosen nimeä kantavia laatoituksiakin on erilaisia.

Pistäydyin kuluneella viikolla Oxfordissa. Etsin myös Oxfordin yliopiston matematiikan instituutin, joka sijaitsee uudessa ja hienossa toisen tunnetun matemaatikon, Andrew Wilesin nimeä kantavassa rakennuksessa. Andrew Wiles todisti Oxfordissa vuonna 1995 ns. Fermat'n suuren lauseen (engl. Fermat's Last Theorem), joka oli ollut todistamatta siitä lähtien, kun Pierre de Fermat 1637 kirjoitti erään kirjan marginaaliin todistaneensa sen. Marginaali oli kuitenkin liian kapea todistuksen esittämiseen eikä hänen (ilmeisesti virheellistä) todistustaan ole muualtakaan löytynyt.

Oxfordin Andrew Wiles Building

Andrew Wiles Buildingin edustalla on Penrosen laatoitus, joka koostuu sekin kahdesta eri laattatyypistä, molemmat suunnikkaita.  Nämä on sidottu toisiinsa ruostumattomasta teräksestä tehdyillä ympyröillä ja ympyränkaarilla, joiden matemaattista merkitystä en tarkemmin tunne.

Andrew Wiles Buildingin Penrose-laatoitus

Matematiikan perinteet ovat pitkät. Rakennuksen kynnyksellä on teksti, jonka sanotaan olleen myös Platonin Akatemiassa.

Kynnysteksti: Αγεωμέτρητος μηδείς εισίτω

sunnuntai 25. maaliskuuta 2018

CAS: luonne ja käyttötapa

Laskettaessa integraalia
\[
\int_0^{2\pi} \frac{dx}{2+\cos x}
\]
perinteinen menettely on hakea ensin integraalifunktio ja sijoittaa sitten rajat tähän.

Standardisijoituksella $u = \tan(x/2)$ saadaan integraali muotoon
\[
\int \frac{2du}{3+u^2},
\]
josta saadaan integraalifunktio
\[
\frac{2}{\sqrt{3}}\arctan\left(\frac{1}{\sqrt{3}}\tan(\frac{x}{2})\right).
\]
Saman voi tietenkin saada symbolisella ohjelmalla, ja tuloksen voi verifioida derivoimalla.

Sijoittamalla tähän rajat $0$ ja $2\pi$ saadaan kummassakin tapauksessa $0$, ja määrätty integraali siis näyttäisi olevan $0$.

Ajattelevalla laskijalla pitäisi tällöin hälytyskellojen soida: Eihän se näin voi olla, koska integraalifunktio $1/(2+\cos x)$ on koko integroimisvälillä aidosti positiivinen.

Ongelman syy paljastuu piirtämällä integraalifunktion kuvaaja: kohdassa $x = \pi$ näyttää olevan epäjatkuvuus. Tällaistahan integraalifunktiolla ei saisi olla, sen pitää olla jatkuva.

Sininen:funktio $1/(2+\cos x)$; punainen: edellä saatu integraalifuntkio

Kovin kaukana ratkaisusta ei kuitenkaan olla, koska integraalifunktioon voidaan aina liittää additiivinen vakio $C$. Jos vakio kohdan $x = \pi$ vasemmalla puolella on $0$ ja oikealla puolella käytetään hypyn suuruista arvoa $2\pi/\sqrt{3}$, saadaan jatkuva integraalifunktio ja tämän avulla määrätyn integraalin arvoksi $2\pi/\sqrt{3}$.

Tähän tulokseen päästäänkin useimmilla symbolisilla ohjelmilla suoraan, kun lasketaan määrätty integraali.

Onko saatua integraalifunktiota sitten pidettävä virheellisenä? Riippuu siitä, mitä integraalifunktiolla tarkoitetaan. Useimmille ohjelmille (kuten kynä-paperi-laskijoillekin) se on antiderivaatta, ts. funktio, joka on derivoituva mahdollisesti yksittäisiä pisteitä lukuunottamatta ja derivaatta yhtyy alkuperäiseen funktioon.

Toisaalta ohjelmat saattavat myös huolehtia integraalifunktion jatkuvuudesta. Esimerkiksi Nspire näyttää lisäävän em. lausekkeeseen hieman kryptiseltä näyttävän termin
\[
-\frac{1}{\sqrt{3}} \left(\mathrm{mod}(x-\pi,2\pi) - x\right),
\]
mikä tekee funktiosta jatkuvan.

Symbolisia ohjelmia pidetään usein välineinä, joilla pitäisi ratkaista matemaattisia tehtäviä samassa hengessä kuin kynällä ja paperilla tavoitteena tehtävän ainoa oikeaoppinen ratkaisu. Asennetta on syytä muuttaa.

Ohjelmilla on oma käsitteistönsä ja oma logiikkansa, joka ei aina ole sama kuin totutussa matematiikan opetuksessa. Vain yhtä oikeaoppista ratkaisuakaan ei ole. Samaa ongelmaa voidaan lähestyä monella eri tavalla, joista toiset ehkä kertovat tilanteesta enemmän kuin toiset, mutta kaikilla on ansionsa.

Ohjelmia on ajateltava enemmän välineinä tutkimisessa ja kokeilemisessa, ei niinkään valmiin ratkaisun laatimisessa. Niitä ei ehkä edes tarvita, jos tehtävät ovat perinteisen kaltaisia.

maanantai 26. helmikuuta 2018

$(-1)^\pi$ ja muita kummallisuuksia

Yleisen potenssin $a^r$ määrittelyssä yleensä oletetaan, että $a$ on positiivinen.  Eksponentti $r$ voi olla mikä tahansa reaaliluku. Määrittely etenee sallimalla $r$:lle aluksi positiiviset kokonaisluvut, sitten kaikki kokonaisluvut, rationaaliluvut ja lopuksi reaaliluvut. Siten esimerkiksi $5^{1/2} = \sqrt{5} = 2.236\dots$ ja $e^{-\pi} = 0.0432\dots$ tulevat määritellyiksi.

Laskentaohjelmat antavat kuitenkin tuloksia myös tapauksissa, joissa $a$ on negatiivinen tai peräti kompleksinen. Myös $r$ voi kompleksiluku. Mitä nämä itse asiassa tarkoittavat?

Negatiivisen luvun kokonaislukupotenssi on ongelmaton.

Jos eksponentti on muotoa $1/n$, kyseessä on $n$:s juuri, ts. yhtälön $x^n = a$ ratkaisu $\sqrt[n]{a}$. Jos $a$ on positiivinen, tälle löytyy aina yksi reaalinen ratkaisu. Jos $a$ on negatiivinen, näkökulmaa täytyy hieman muuttaa ja tarkastella asiaa kompleksilukujoukossa.

Juuren ja juurifunktion käsitteet on tällöin syytä erottaa. Luvun $a$ $n$:s juuri on em.  yhtälön $x^n = a$ ratkaisu ja näitä on kompleksitasossa $n$ kappaletta. Jokin näistä kiinnitetään juuren päähaaraksi eli juurifunktioksi. Merkintä $\sqrt[n]{a}$ tai $a^{1/n}$ viittaa yleensä tähän. Yleensä juurifunktioksi kiinnitetään se, jonka napakulma on itseisarvoltaan pienin. Tämä voi olla kompleksinen, ja varsin usein onkin. Jos halutaan pysyä reaalialueella, voidaan kiinnittää reaalinen vaihtoehto, jos sellainen on olemassa. Siis:
\[
(-8)^{1/3} = \sqrt[3]{-8} = 1 + i\sqrt{3} \quad\text{tai}\quad
(-8)^{1/3} = \sqrt[3]{-8} = -2.
\]
Tietokoneohjelmissa voidaan yleensä valita, kumpaa kiinnitystä käytetään.

Kiinnittämisellä on kuitenkin haittansa: kaikki tavalliset laskusäännöt eivät enää päde. Yllä olevassa kuvassa on yksi esimerkki, toinen saadaan luvuista $a = -1 + i\sqrt{3}$, $b = i$, joille $\sqrt{a}\sqrt{b}$ ja $\sqrt{ab}$ ovat vastakkaismerkkiset eivätkä yhtä suuret.  Laskusäännöt ovat voimassa, jos juuri valitaan eri vaihtoehdoista tilanteeseen sopivalla tavalla.

Ongelmaa voidaan lähestyä myös kirjoittamalla potenssin mahdollisesti kompleksinen kantaluku napakoordinaattimuotoon:
\[
a = x +iy = |a| (\cos\varphi + i\sin\varphi) = |a| e^{i\varphi},
\] missä $\varphi$ on luvun $a$ napakulma, $-\pi < \varphi \le \pi$. Jos $a$ on negatiivinen (ja reaalinen), esitys on muotoa $a = |a| e^{i\pi}$, sillä $e^{i\pi} = -1$. Kompleksisen eksponenttifunktion $e^z$ määritelmä on luontevimmin sarjakehitelmä, mutta tässä yhteydessä riittää ajatella yhteyttä $e^{it} = \cos t + i\sin t$, $t$ reaalinen.

Napakoordnaattimuoto antaa mahdollisuuden potenssin yleiseen määrittelyyn:
\[
a^r = |a|^r e^{ir\varphi},
\] jolloin on määritelty, että kompleksinen eksponenttifunktio korotetaan potenssiin kertomalla eksponentit. Tällä tavoin saadaan lasketuiksi esimerkiksi oheisen kuvan potenssien likiarvot. Jätän tarkat arvot lukijan selvitettäviksi; edellä sanottu antaa eväät.
Miten napakoordinaattimuodon käyttö sitten suhtautuu juurten monikäsitteisyyteen?  Saadaanko kaikki juuren kaikki arvot sen avulla? Napakulma normeerataan yleensä välille $-\pi < \varphi \le \pi$, mutta periaatteessa ei ole estettä lisätä siihen mielivaltainen määrä luvun $2\pi$-termejä. Nämä antavat muut juuren arvot.  $n$:nnen juuren tapauksessa samat arvot alkavat toistua $2\pi$-termien määrän kasvaessa, joten eri suuria arvoja saadaan vain $n$ kappaletta. Lukija miettiköön, mitä tapahtuu, jos eksponentti on esimerkiksi $\pi$.

tiistai 30. tammikuuta 2018

Ihmettelen

Ellipsi?
Runsas puolivuosisataa sitten — siis muinaisuudessa, silloin kun minä kävin koulua — oppikoulun matematiikan kaksi ensimmäistä vuotta olivat aritmetiikkaa, minkä jälkeen se jakaantui algebraan ja geometriaan. Nykykouluun tulkittuna kyse oli peruskoulun luokista 5–9 ja lukiosta.

Geometria oli ajatusmaailmaltaan kelpo Eukleideen oppien mukaista: deduktiivista päättelyä, jolla todistettiin geometriset tulokset eli teoreemat tai lauseet. Lisäksi hyödynnettiin algebraa Pythagoraan lauseeseen ja verrannollisuuteen perustuvissa yhteyksissä.  Algebran puolella käsiteltiin analyyttista geometriaa, ts. tutkittiin suoria ja eräitä käyriä xy-tasossa niiden yhtälöiden avulla.  Vektoreita ei lainkaan käsitelty.

Puolen vuosisadan kuluessa opetussuunnitelmat ovat muuttuneet useaan kertaan. Lyhyesti sanottuna Eukleideen mallin mukainen deduktiivinen päättely on siirtynyt historiaan, vektoreita on alettu opettaa, analyyttinen geometria on hieman supistunut, mutta muuten ennallaan.  Kyseessä ovat lukion kurssit 3, 4 ja 5. Näiden kirjoja olen viime päivinä selannut, peruskoulupuolesta en tiedä, mutta koko geometria näyttää siirtyneen lukioon.

Kirjoja selatessa tulee kuitenkin tunne, että isoista muutoksista huolimatta kokonaisuutta ei ole koskaan harkittu uudelleen.  Analyyttinen geometria ei ole muuta kuin vektorigeometrian komponenttimuoto, mutta tätä ei hyödynnetä, vaan kyseessä on kaksi eri asiaa. Monet geometriset tulokset formuloidaan edelleen lauseiksi, vaikka minkäänlaisesta deduktiosta ei ole kyse. Joitakin tuloksia todistetaan (puhuisin mieluummin niiden johtamisesta tai perustelemisesta), monet annetaan vain ilmoitusasioina.

Kokonaisuutta hämärtävät asiat, jotka oikeastaan kuuluisivat muuhun yhteyteen, mutta jotka täytyy käsitellä geometrian seassa, koska niitä tarvitaan. Esimerkkinä itseisarvot ja yhtälöryhmien ratkaiseminen.

Kirjojen selailu on tietenkin varsin pintapuolista asioiden tarkastelua, mutta on vaikeata välttyä käsitykseltä, että aikaa tuhlataan asioiden sekavaan käsittelyyn. Varsin ihmeellistä, kun lukiokursseja usein pidetään aika raskaina. Selkeämpi rakenne saattaisi auttaa opiskelijaakin asioiden hahmottamisessa.

Olisi kiinnostavaa tietää, miten geometriaa tai matematiikkaa yleensäkin opetetaan esimerkiksi Ruotsin, Saksan, Englannin, Ranskan tai Venäjän kouluissa.

Niin geometrian kuin muidenkin asioiden käsittelyä vaivaa oppikirjojen tarve asioiden puhkiselittämiseen. Opiskelijan oivalluksille ei anneta tilaa. Pyrkimyksenä on esittää jokaisesta asiasta yksityiskohtaisesti ratkaistu esimerkki. Syntyy tunne, että nämä pitää opetella ulkoa eikä muuta tarvita. Eikä kai kokeessa saisi muuta kysyäkään.

Kyse on tietenkin siitä, miksi matematiikkaa oikein opetetaan. Onko tarkoitus oppia ratkaisemaan tehtäviä, joita samassa muodossa ei koskaan enää tapaa? Onko tarkoitus oppia jonkinlaista johdonmukaista ajattelua?  Onko tarkoitus oppia ymmärtämään keinoja, joilla maailmaa paljolti hallitaan?

Oman lisämausteensa keittoon tuo digitalisaatio ja laskentatyökalujen käyttö: lisää detaljeja opittavaksi ohjelmista, joita ei koskaan myöhemmin käytetä. Silti laskentatyökalut ovat tämän aikakauden työkaluja kuten logaritmitaulut olivat runsas puoli vuosisataa sitten. Niiden käyttöön on syytä tottua, mutta oikea tapa niiden hyödyntämiseen ei löydy hetkessä.

tiistai 16. tammikuuta 2018

En ymmärrä

Funktiokone (© Tuula Kivelä)
Koulumaailman ulkopuolisen kansalaisen on hieman vaikeata saada selville, mitä koulussa nykyään oikein opetetaan. Jos ei ole sopivan ikäisiä omia tai tuttavien lapsia eikä lähipiiriin kuulu opettajia, ei ole muuta mahdollisuutta kuin kävellä kirjakauppaan.  Kirjastoissahan koulukirjoja ei ole, eikä kirjakaupassakaan muita kuin lukion kirjoja. Digitaalimateriaalien yleistyessä tilanne menee vielä vaikeammaksi.

Minulla on kuitenkin sen verran hyvät suhteet erääseen lähiseudun lukioon, että sain lainaksi joulunpyhien yli nipun lukion pitkän matematiikan kirjoja. Näitä olen selannut ja ihmetellyt, tosin kyllä tehnyt muutakin joulun aikaan.

Lukion ensimmäinen matematiikan kurssi on yhteinen lyhyelle ja pitkälle matematiikalle tarkoituksena antaa jonkinlainen kuva matematiikasta, ennen kuin valinta täytyy tehdä. Järjestely on saanut paljon kritiikkiä. En pidä ajatusta sinänsä huonona, mutta kirjaa selattuani en voi pitää toteutusta onnistuneena. Kyllähän se on omiaan ruokkimaan näkemystä, että matematiikkaa ei voi ymmärtää eikä siitä hyötyä ole, ehkä prosenttilaskua lukuunottamatta.

Ehkä on syytä todeta, että selaamani kirja on Sanoma Pron kirja, mutta en usko muiden tästä olennaisesti poikkeavan. Osa ongelmista johtuu opetussuunnitelmasta.

Mitä hirvittävyyksiä kirjasta sitten löytyy? Tai siis pedagogisia ratkaisuja, joita minä en ymmärrä.

Ensimmäinen huomio koskee esitystapaa. Peräkkäisiä esimerkkejä hengessä 'tee näin', sitten harjoitustehtäviä, joissa on tarkoitus apinoida esimerkkejä. Opitaan ratkaisemaan mallitehtäviä, ajattelu jää sivuseikaksi.

Kirja alkaa lukujoukkojen esittelyllä, luonnolliset luvut, kokonaisluvut, rationaaliluvut, reaaliluvut. Seuraava joukko aina edellistä laajempi. Joitakin laskusääntöjä siinä hengessä, että reaalilukujen aksioomista on poimittu jotakin, kun täyttä aksioomalistaa ei ymmärrettävistä syistä voida esittää. Mutta ei kai lukiolainen lukuja näin miellä? Eivät laskusäännöt tule siitä, että ne julistetaan. Kyllä ne on mielletty jollakin muulla tavalla.

Aksiomatiikka sinänsä voisi ainakin osalle lukiolaisista olla kiinnostava lähestymistapa, mutta reaalilukujen kohdalla se on aika toivoton ajatus.  Tie on pitkä ja täynnä trivialiteetteja, jos jotakin halutaan todistaa aksioomista lähtien. Tylsää, ei varmasti innosta.

Tämä olisi ollut luonnollinen paikka opetella itseisarvojen käyttöä, mutta se on siirretty johonkin myöhempään kurssiin. Irrationaalilukujakin olisi voinut pohtia: miksi niitä tarvitaan ja mitä ne oikein ovat.  (Enkä tarkoita Cauchyn jonoja tai Dedekindin leikkauksia.)

Seuraavaksi kerrataan potenssin määritelmä ja laskusäännöt, tosin vain kokonaislukueksponentein. Sitten tulee yllätys: logaritmifunktio. Opitaan muun muassa, että yhtälön $3^x = 25$ ratkaisu on $x = \log_3 25 \approx 2.93$.  Siis $3^{2.93}$ on $25$, ainakin likimain. Mutta mitä tarkoittaa $3^{2.93}$?  Se saadaan laskimesta eikä sitä yritetä sen kummemmin ymmärtää. Matematiikka on täynnä asioita, joita ei ole tarkoituskaan ymmärtää. Vai lisäisikö tämä kiinnostusta pitkään matematiikkaan, koska opittavaa vielä tuntuu riittävän?

En ymmärrä, miksi edes rationaalisista eksponenteista ei puhuta mitään.  Eivätkä irrationaalisetkaan kovin mystisiä olisi, jos irrationaaliluvut olisi jotenkin pohjustettu. Kysyin tuttavaperheen lukiolaiselta, tietääkö hän, mitä $2^{1/2}$ tarkoittaa. Sanoi kyllä tietävänsä, mutta ei koulussa oppineensa.

Funktio on matematiikan yleisimpiä käsitteitä ja sellaisena kaikille yhteisen kurssin luonnollista sisältöä. Yhden muuttujan funktioiden ja niiden kuvaajien käsittely on hyvä pohja myöhemmille matematiikan opinnoille, olivat ne sitten lyhyttä tai pitkää.

Mahdollisuus kiinnostavien asioiden esiin tuomiseen kuitenkin hukataan, jos funktioista ei enempää sanota. Kun funktiokone ajatuksena kuitenkin esitellään, olisi saman tien voinut esitellä vaikkapa kahden muuttujan funktiot tai käyttää esimerkkinä jokaisen oppilaan omaa mahtavaa funktiokonetta, jossa on varsin monta funktiota valmiina: laskinta. Näiden määritelmiin voidaan palata myöhemmin, mutta kuvaajia niille voidaan jo tässä vaiheessa piirtää. Samalla tulisi laskinharjoittelua.

Sanottakoon selvyyden vuoksi, että toki Sanoma Pron oppikirjassa on hyvääkin.  Tämän jutun otsikko on kuitenkin 'En ymmärrä', joten keskityn siihen.

Oleellista on, että asiat käsitellään luonnollisissa yhteyksissä. Ei matematiikka ole kokoelma irrallisia silpputietoja. Nykyiseen repaleiseen kurssirakenteeseen on ajauduttu vuosien kuluessa. Monia asioita on poistettu, toisia lisätty, nekin ehkä poistettu, vanhoja edelleen hellitään, vähänkään radikaalimpaa revisiota ei ole tahdottu/uskallettu tehdä. Lopputulos on valitettavasti sellainen, etten lainkaan ihmettele, jos matematiikalla on vähän huono maine.

Minut kutsuttiin kerran erään kustantajan oppikirjaprojektin ohjausryhmään. Esitin tuolloin, että voisi olla hyvä katsoa, miten asiat on ratkaistu muissa maissa, lähinnä Euroopassa. Vaikka ratkaisuja ei varmasti voikaan kopioida, niistä voi oppia uusia ehkä hyödyllisiä näkökulmia. Kustantaja ei innostunut hankkimaan kirjoja eivätkä oppikirjantekijätkään. Oli kiire. Tehtiin mieluummin ihka omaa sutta.