sunnuntai 10. kesäkuuta 2018

Deltafunktio

Edellisessä postauksessani esittelin deltafunktion: $\delta(x) = 0$, jos $x \neq 0$, ja $\delta(0)$ niin vahvasti ääretön, että
\[
\int_{-\infty}^{\infty} \delta(x)\,dx = 1.
\]

Määrittely 'niin vahvasti ääretön' ei kuulosta matemaattisen täsmälliseltä eikä integraaliehtokaan ole uskottava: integraalin määrittelytavasta (näitä on useita) riippuen kuvatunkaltainen $\delta$ joko ei ole integroituva tai integraalin arvo on $0$.  Mistä siis olisi kysymys?

Lähtökohdaksi voidaan ottaa ns. deltajono, funktiot, jotka on välillä $[-1/n,1/n]$ määritelty lausekkeella
\[
\delta_n(x) =
\frac{e^{-\frac{1}{1-n^2x^2}}}{\int_{-1/n}^{1/n}e^{-\frac{1}{1-n^2u^2}}\,du}
\]
ja jotka ovat $= 0$ tämän välin ulkopuolella; $n = 1,\,2,\,3,\,4,\,\dots$.  Jakajana olevasta integraalista seuraa, että jokaisen funktion integraali reaaliakselin yli on $= 1$. Kun $n$ lähestyy ääretöntä (ts. $n \to \infty$) funktion kuvaaja kapenee ja arvolla $x = 0$ lähestyy ääretöntä. Rajalla syntyy siis deltafunktio:
\[
\lim_{n \to \infty} \delta_n(x) = \delta(x).
\]
Funktiot $\delta_n(x)$, $n = 1,2,3,4,5$.


Funktion $\delta_n$ määritelmän perusteella on
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n(x)\,dx = 1.
\] Tässä raja-arvon muodostamista ei kuitenkaan voida siirtää integraalimerkin sisään kuten edellä on todettu. Deltafunktion määrittelyssä on tässä kohden virhe.

Yleisesti hyväksyttyjen deltafunktion laskusääntöjen mukaan on
\[
\int_{-\infty}^{\infty} f(x)\delta(x)\,dx = f(0), \qquad
\int_{-\infty}^{\infty} f(x)\delta(x-1)\,dx = f(1).
\] Kuitenkin integraalin määritelmien perusteella nämä integraalit joko eivät ole olemassa tai ovat $= 0$. Integroitava funktiohan eroaa nollasta enintään yhdessä pisteessä. On siis tehty toinen virhe.

Deltafunktiolla laskemisen taidokkuutta osoittaa kuitenkin, että lopputulokset $f(0)$ ja $f(1)$ ovat aivan oikein. Tehdyt kaksi virhettä nimittäin kumoavat toisensa.

Itse asiassa integraalilaskun vaikeamman väliarvolauseen mukaan on
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)\delta_n(x)\,dx =
\lim_{n \to \infty} f(t) \int_{-\infty}^{\infty} \delta_n(x)\,dx =
\lim_{n \to \infty} f(t),
\] missä $-1/n \le t \le 1/n$. Kun $n \to \infty$, lähestyy $t$ nollaa ja $f(t)$ arvoa $f(0)$, mikäli $f$ on jatkuva funktio. Tulos siis pätee.

Deltafunktio ei ole ainoa tämäntyyppinen olio, vaan niille on kehitetty oma teoriansa, jota kutsutaan distribuutioteoriaksi. Pisteeseen keskittyvästä jakaumasta deltassakin on kyse. Olioita kutsutaan distribuutioiksi tai yleistetyiksi funktioiksi.

Varsinkin fyysikot laskevat sujuvasti deltafunktiolla sekä yhdessä että useammassa ulottuvuudessa. Matemaatikotkin voivat olla rauhallisia, sillä pätevä teoria on olemassa.

1 kommentti:

markku halmetoja kirjoitti...

Matemaatikot ovat rauhallisia, sillä he ovat kehittäneet distribuutioteorian.