Kompleksimuuttujan kompleksiarvoisia funktioita $f:\mathbb{C} \to \mathbb{C}$ voi tutkiskella selvittämällä, millaiseksi käyräksi kuvautuu sopivasti valittu lähtötason käyrä, esimerkiksi suora tai yksikköympyrä.
Funktion
\[
f(z) = \left(z^p + \frac{1}{2z^p}\right)^{1/p}
\]
tapauksessa sopiva käyrä on yksikköympyrä. Luontevinta on, että $p$ on luonnollinen luku, mutta myös puoliluvut $1/2$, $3/2$, $5/2$ jne. kelpaavat. Tuloksena on piparkakkumuottikäyriä:
$2p = 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10,\ 200$ |
Aivan ongelmaton tilanne ei ole, sillä piparkakkumuotin tulee olla umpinainen käyrä, mutta kompleksiluvun vaihekulman eli argumentin antava funktio $\arg$ saa arvonsa väliltä $]-\pi,\pi]$ ja jaksolliseksi laajennettuna sillä on hyppyepäjatkuvuus kohdissa $\pi + 2n\pi$ ($n$ kokonaisluku tavanomaiseen tapaan). Tämä on korjattava jatkuvaksi, jotta saadaan umpinainen piparkakkumuotti. Saman asian voi tehdä valitsemalla sopiva arvo funktion lausekkeessa olevalle $p$:nnelle juurelle (eli potenssille $1/p$). Kompleksitasossahan $p$:nnellä juurella on $p$ eri suurta arvoa.
Jotkut ratkovat ristisanatehtäviä aikansa kuluksi. Matemaattisemmin orientoituneet henkilöt saattavat olla kiinnostuneita matemaattisen ohjelmakoodin selvittelystä. Tarjoan pohdittavaksi Mathematica-koodin, joka piirtää piparimuotteja. Ongelmana siis on, mitä mikäkin koodirivi tekee.
Vihjeeksi Mathematica-ohjelmiston käyttämän kielen, ns. Wolfram Languagen verkkodokumentti: http://reference.wolfram.com/language/.
Tämän jälkeen voikin ryhtyä tekemään piparkakkumuotteja 3D-tulostuksella. Minulla itselläni on vanhemmalla tekniikalla tehdyt: peltiä leikkaamalla ja taivuttelemalla.
Lopuksi toivotan kaikille riemullista joulujuhlaa.
Ei kommentteja:
Lähetä kommentti