Jos verkkokirjakaupoista ei löydy, niin tekijältä voi tiedustella: etunimi.sukunimi@elisanet.fi
Simo K. Kivelä Vaellusretkiä matematiikkaan 25 erillistä tarinaa matematiikasta ja sen sovelluksista matematiikkaa opiskelevalle lukiolaiselle, yliopisto-opintoja aloittelevalle, näkemystään laajentavalle opettajalle tai yleisesti matematiikasta kiinnostuneelle. 210 sivua, 172 asioita havainnollistavaa kuvaa; julkaistu 2017. Kyseessä ei ole oppikirja, vaan tavoitteena on luoda näkemystä sekä matematiikan rakenteesta eksaktina tieteenä että tavoista soveltaa sitä. Matematiikka on osa ihmiskunnan yhteistä kulttuuria ja sen ajatusmaailman ymmärtäminen on tarpeen riippumatta konkreettisista työelämän tarpeista. |
|
Simo K. Kivelä M niinkuin matematiikka Lukiolaisille suunnattu matematiikan tietosanakirja, joka kattaa lukion pitkän matematiikan kurssin tärkeimmät sisällöt jossain määrin niitä laajentaen. Teksti koostuu muutamaa poikkeusta lukuunottamatta alle sivun pituisista artikkeleista, jotka on linkitetty toisiinsa marginaalissa olevilla sivunumeroviitteillä. Kyseessä on lukiomatematiikan haku- ja kertausteos. Jokainen jatko-opintojen opettaja tulee onnelliseksi, jos opiskelija hallitsee kirjassa esitetyn matematiikan. Sivuja 422; julkaistu vuonna 1998, uudistettu painos 2000. Kirja on syntynyt osana Teknillisessä korkeakoulussa (Aalto-yliopiston edeltäjässä) vuonna 1993 alkanutta projektia (MatTa), jossa tutkittiin mahdollisuuksia ja vaihtoehtoja digitaalisen oppimateriaalin tuottamiseen. Varsinaisena tavoitteena oli verkossa julkaistava oppimateriaali, mutta teksti kirjoitettiin sellaisella tekniikalla (LaTeX), että sen hyödyntäminen eri muodoissa oli helposti mahdollista. Kirjan lisäksi tehtiin verkkoon kaksi versiota, html-muotoinen (ei enää julkisesti saatavilla) ja pdf-muotoinen. Verkkoversiossa kirjan sivunumeroviitteet on korvattu aktiivisilla linkeillä. |
|
Simo K. Kivelä Perspektiivikuvan geometriset perusteet Renessanssitaiteilijat loivat perspektiivisäännöt, jotka pohjautuvat kolmiulotteiseen geometriaan. Aksonometriset kuvat (eli yhdensuuntaisprojektiokuvat) ovat hieman helpommin piirrettäviä, mutta niitäkin koskevat säännöt voidaan ymmärtää kolmiulotteisen geometrian avulla. Käänteinen tehtävä, kohteen mittasuhteuden selvittäminen kuvan perusteella on ratkaistavissa geometrisilla konstruktioilla, mikäli kohteesta ja kuvasta voidaan tehdä säännöllisyysoletuksia. Tarkkojen kuvien laatiminen on aiemmin perustunut lähes yksinomaan piirtämiseen tai valokuvaamiseen. Tietotekniikka on tuonut uuden mahdollisuuden: kuvien laskemisen. Kirjassa esitetään tarvittavat geometriset perusteet ja näihin perustuvat piirtämismenetelmät. Mahdollisuudet kohteen rekonstruoimiseen kuvan perusteella käsitellään. Lopuksi johdetaan lyhyesti kaavat kuvien laskemiseen. 116 sivua, 80 kuvaa; julkaistu 2008. |
|
Simo K. Kivelä DelTa — Tavalliset differentiaaliyhtälöt Tavallisten differentiaaliyhtälöiden ominaisuuksien ja sekä symbolisten että numeeristen ratkaisumenetelmien alkeet. Esityksessä hyödynnetään laskentaohjelma Mathematicaa. Kirjan liitteenä on CD-ROM, jolla on kirjan sisältö digitaalisessa muodossa ja laskentaohjelmadokumentit sekä Mathematicaa että Maplea varten. Lisäksi CD-ROM:illa on kolmattakymmentä esimerkkiä differentiaaliyhtälöiden käyttämisestä erilaisten ilmiöiden mallintamisessa. Kirjassa on 171 sivua; julkaistu 2003. Kirja on Teknillisessä korkeakoulussa (Aalto-yliopiston edeltäjässä) 2000-luvun alussa toteutetun kokeiluprojektin tuotos. Sen sisältö muodostuu erillisistä 1–2 sivun pituisista artikkeleista, jotka on ryhmitelty teoria-, ratkaisemis- ja esimerkkiosuuksiksi. Kokonaisuus kattaa pääpiirteissään yliopistollisen alkeiskurssin, mutta fragmentaarinen rakenne sallii myös paljon suppeammat kurssit, jolloin kirjasta poimitaan vain halutut osat. Materiaali on saatavissa myös digitaalisessa muodossa (DelTa-paketti). |